
Setting up Simulation Factory on NCAR Cheyenne

Simulation Factory introduction

Simulation Factory (https://simfactory.org), or "simfactory" for short, is the Einstein Toolkit's tool to handle
compiling Cactus on compute clusters and laptops. It also provides functionality to create and manage
simualtions, and trys to provide a common interface for clusters using different resource managers.

In the word of the simfactory authors:

Performing large three-dimensional time-dependent simulations is a complex numerical task.
Managing such simulations, often several at the same time as they execute on different
supercomputers, is comparable to herding cats — supercomputers differ in their hardware
configuration, available software, directory structure, queueing systems, queuing policies, and
many other relevant properties.
However, these differences are only superficial, and the basic capabilities of supercomputers
are very similar. The simulation factory contains a set of abstractions of the tasks which are
necessary to set up and successfully finish numerical simulations using the Cactus framework.
These abstractions hide tedious low-level management tasks, they capture "best practices" of
experienced users, and they create a log trail ensuring repeatable and well-documented
scientific results. Using these abstractions, many types of potentially disastrous user errors are
avoided, and different supercomputers can be used in a uniform manner.

Today's simfactory is simfactory version 2 (https://arxiv.org/abs/1008.4571), a Python 3 application re-
implementing the functionality of Erik Schnetter's original Perl based simfactory code.

Simfactory directory structure
Users typically interact with simfactory using its command line interface via the sim command wrapper. For
example sim build --thornlist einsteintoolkit.th etk compiles a Cactus configuration etk
using the thorn list file einsteintoolkit.th .

This command is identical on all systems supported by simfactory. How then does simfactory know which
compiler to use and which options to pass to the Cactus build system (and latter, how to submit a simulation to
the cluster's resource manager)?

Simfactory contains an extensive "machine database" in the mdb subdirectory that contains information
specific to each cluster. A complete entry for a machine consistents of 4 files in subdirectories of mdb :

https://simfactory.org/
https://arxiv.org/abs/1008.4571

a machine "ini" file in the machines subdirectory. This file uses a MS Windows ini
(https://en.wikipedia.org/wiki/INI_file) style ini syntax, to identify and describe a machine and ties all 4 files
together. Options in machine ini files can be overwritten using section in the user's
etc/defs.local.ini file in simfactory.

a option list file in the optionlists directory. This is a standard Cactus configuration file as described in
chapter B2.1 (http://einsteintoolkit.org/usersguide/UsersGuide.html#x1-19000B2.1) "Configuration Options"
of the Cactus UsersGuide
2 template files, a submit sript in submitscripts and a run script in runscripts , that are used when
submitting simulations to the resource manager. The former typically contains the resource manager
comments (e.g. #SBATCH -A MyAllocation) and is the template for the batch job script passed to the
resource manager. The latter, the run script, is a bash script template file that contains the "meat" of the
batch job script.

For example this is what a directory layout of files used to descripe a cluster "foo" could look like:

simfactory
 |
 +- mdb
 | |
 | +- machines/foo.ini
 | +- optionlists/foo-gnu.cfg
 | +- runscripts/foo-gnu.run
 | +- submitscripts/foo.sub
 |
 +- etc
 |
 +- defs.local.ini

Setting up simfactory for a new machine means providing the 4 mdb files to simfactory.

This is, unfortunately, not a simple task and requires experience using clusters as well as some understanding
of simfactory. In particular, setting up simfactory on a cluster is quite a bit more complex than "only" compiling
and submitting a Cactus simulation using example batch job scripts and suggested environment modules
(https://en.wikipedia.org/wiki/Environment_Modules_(software)) the cluster's help page. Simfactory does not
provide any automation or help when incorporating a new machine.

Over the years a number of attempts were made to document this, first in the Simulation Factory User Guide
(https://simfactory.bitbucket.io/simfactory2/userguide/) by Ian Hinder, then in the Simulation Factory Advanced
Tutorial (https://docs.einsteintoolkit.org/et-docs/Simulation_Factory_Advanced_Tutorial) by Michael Thomas
and Ian Hinder, and finally in the Configuring a new machine (https://docs.einsteintoolkit.org/et-
docs/Configuring_a_new_machine) Einstein Toolkit wiki page by Ian Hinder and Roland Haas. All of these still
provide valueable, if incomplete, sources of information that should be consulted by anyone attempting to set
up simfactory on a new machine.

This tutorial finally, attempts to document my (Roland Haas) own steps to set up simfactory on a new machine,
specifically the Cheyenne (https://arc.ucar.edu/knowledge_base/70549542) cluster at NCAR
(https://arc.ucar.edu/).

How to use this tutorial
This tutorial will not list every possible option available in simfactory, nor does it aim to replace simfactory's
documentation. For thos please consult the Configuring a new machine (https://docs.einsteintoolkit.org/et-
docs/Configuring_a_new_machine) Einstein Toolkit wiki and / or the Simulation Factory User Guide

https://en.wikipedia.org/wiki/INI_file
http://einsteintoolkit.org/usersguide/UsersGuide.html#x1-19000B2.1
https://en.wikipedia.org/wiki/Environment_Modules_(software)
https://simfactory.bitbucket.io/simfactory2/userguide/
https://docs.einsteintoolkit.org/et-docs/Simulation_Factory_Advanced_Tutorial
https://docs.einsteintoolkit.org/et-docs/Configuring_a_new_machine
https://arc.ucar.edu/knowledge_base/70549542
https://arc.ucar.edu/
https://docs.einsteintoolkit.org/et-docs/Configuring_a_new_machine
https://simfactory.bitbucket.io/simfactory2/userguide/

(https://simfactory.bitbucket.io/simfactory2/userguide/) and relevant chapter
(http://einsteintoolkit.org/usersguide/UsersGuide.html#x1-19000B2.1) "Configuration Options" of the Cactus
UsersGuide.

Instead it provides a narrated tour of how I set up simfactory on a new cluster, trying to provide helpful tips and
point out pitfalls that you may encounter. As such: your milage may vary!

Before you start: gather information
Setting up simfactory is not for the faint of heart, but a lot trouble can be avoid by spending some time gathering
information. Setting up simfactory is also not fast, it takes me, whom I consider to be familiar with HPC systems
and who has done this before, at least half a day for an initial setup and likely a couple of months of using the
setup to iron out kinks. So if you have never added a machine to simfactory, have never used the machine in
question before, and this is you first time using the Einstein Toolkit, you are in for a tough ride (but is has been
done) and should expect to spent multiple days. However, help is available, usually from the Einstein Toolkit
users group users@einsteintoolkit.org (mailto:users@einsteintoolkit.org) and from the cluster admins.

With this out of the way, these are information would collect:

find the cluster's documentation website, e.g. https://arc.ucar.edu/knowledge_base/70549542
(https://arc.ucar.edu/knowledge_base/70549542)

locate information on how to log in, e.g.
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-LogginginonanNCARsystem
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-LogginginonanNCARsystem)
locate information on what environment module system is used, e.g.
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Environment
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Environment) You should be
familiar with environment modules (https://lmod.readthedocs.io/en/latest/) and the module avail ,
module spider and module load commands.

locate information on the file systems on the cluster, you want one directory that does not purge to
store source code and compile, and a scratch directory where to run simulations, e.g.
https://arc.ucar.edu/knowledge_base/68878466 (https://arc.ucar.edu/knowledge_base/68878466)
locate information on how to compile a code which compilers to use etc., e.g.
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-compilingCompiling
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-compilingCompiling) .
Usually I start with the default choices made by the admins for C/C++/Fortran compiler and MPI
library. Everything else is optional and can be ignored if needed. However you may want to take note
of "typical" libraries for use by the ET for example HDF5 , GSL , BLAS / LAPACK / MKL
find a "sample batch" script, e.g.
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs)

find out about which queues exist usually from the docs, e.g.
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Cheyennequeues
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Cheyennequeues) but if
all else fails, and assuming the system uses SLURM, you can use the output of scontrol show
partitions or for PBS like systems qstat -q .

download (and know how to compile and run) an MPI "Hello, world!" code, for example this
(https://mpitutorial.com/tutorials/mpi-hello-world/) or even better Blue Waters's
(https://bluewaters.ncsa.illinois.edu/liferay-content/document-
library/Documentation%20Documents/aprun/hello_world.c) more informative one. This will be helpful to
check that the resource manager is being used correclty later on

https://simfactory.bitbucket.io/simfactory2/userguide/
http://einsteintoolkit.org/usersguide/UsersGuide.html#x1-19000B2.1
mailto:users@einsteintoolkit.org
https://arc.ucar.edu/knowledge_base/70549542
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-LogginginonanNCARsystem
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Environment
https://lmod.readthedocs.io/en/latest/
https://arc.ucar.edu/knowledge_base/68878466
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-compilingCompiling
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-Cheyennequeues
https://mpitutorial.com/tutorials/mpi-hello-world/
https://bluewaters.ncsa.illinois.edu/liferay-content/document-library/Documentation%20Documents/aprun/hello_world.c

test that the current development version of the Einstein Toolkit compiles fine on a known good system,
e.g. your laptop. This way, if compilation fails. you kow it's not a (necessarily) a bug in the toolkit

Getting started
First, log in to the machine. I assume this you know how to do, if not the cluster docs will explain how to do so:

> ssh rhaas@cheyenne.ucar.edu
(rhaas@cheyenne.ucar.edu) Token_Response:
Last failed login: Thu Feb 24 01:31:06 MST 2022 from 141.142.41.4 on ssh:no
tty
There was 1 failed login attempt since the last successful login.

* Welcome to Cheyenne - February 23, 2021

 Today in the Daily Bulletin (arc.ucar.edu)

 - Join NCAR HPC User Group (NHUG) monthly call on March 1, 9-1
0 a.m. MT

Documentation: https://bit.ly/CISL-user-documentation
Key module commands: module list, module avail, module spider, module help
CISL Help: support.ucar.edu -- 303-497-2400

On Cheyenne the $HOME directory is 50GB is size (https://arc.ucar.edu/knowledge_base/68878466) which is
suitable for the ET source code tree. There are also Work directories (1TB) that could be used, or used to
stage simuilation input data, and a Scrach directory to run simulations in (purged).

Since login drops be off in $HOME I can directly proceed to download (http://einsteintoolkit.org/download.html)
a development copy of the ET:

> curl -kLO https://raw.githubusercontent.com/gridaphobe/CRL/master/GetComp
onents
> chmod a+x GetComponents
> ./GetComponents --parallel https://bitbucket.org/einsteintoolkit/manifes
t/raw/master/einsteintoolkit.th

If this fails since git or svn are not found then you most likely have to load a module for them. See the
output of module avail 2>&1 | less for which modules to load.

Set up git on the machine so that you can commit changes to simfactory's git repo, typically:

> git config --global user.author "Roland Haas"
> git config --global user.email rhaas@illinois.edu

though git will tell you what to do when you first attempt to commit.

https://arc.ucar.edu/knowledge_base/68878466
http://einsteintoolkit.org/download.html

If this fails b/c the cluster has not access to the Internet (SuperMUC is like this), then you will have to download
the ET on your laptop and use rsync to copy to the cluster.

Assuming all went well you should see the usual GetComponents output ending in:

 Checking out module: CactusExamples/WaveToy2DF77
 from repository: https://bitbucket.org/cactuscode/cactusexamples.git
 into: Cactus/arrangements

 303 components checked out successfully.
 0 components updated successfully.

 Time Elapsed: 1 minutes, 11 seconds

With this we can already check if simfactory's machine database already contains a entry for the machine
(unlikely) or confuses it with an existing machine. For this we use the whoami subcommand of simfactory:

> cd Cactus
> ./simfactory/bin/sim whoami

which should respond with something like:

Warning: Unknown machine name cheyenne6.cheyenne.ucar.edu
Warning: Unknown machine name cheyenne6.cheyenne.ucar.edu
Current machine: None

Importantly the machine should be reported as "unknown" and the current machine as None .

Take note of the machine name that simfactory reported, e.g. cheyenne6.cheyenne.ucar.edu in my
case. We will use this to construct an aliaspattern entry in the machine ini file to identify the machine.

If simfactory reports an existing machine (but not the correct one), then we will have to tighten the alias pattern
used by the offending machine. If, for example, Current machine: golub had been returned the
aliaspattern entry for golub needs updating. You can find the correct ini file by grep ing for golub in

all files in simfactory/mbb/*.ini . Note that the file *name * does not matter. What matters is the name of
the (single) section in the file e.g. [golub] . Once you have found the file, you have to make a guess on how
the alias pattern should be tightened. This may require login into that machine and checking its hostname .
You can also set aliaspattern (temporarily) to and empty pattern ^$ which will never match and thus
avoid the misidentification.

In the (likely) case of no conflict you now know the hostname of one of the login nodes and can start setting up
machine ini file.

Copying and editing files
You should however not create such a file from scratch, instead start by copying a "similar" files from a "similar"
system. Typically you want to check that the queueing system is the same and also things like Cray/non-Cray
system. It is also advisable to copy the machine ini file from an active, in use system and not a long-dead
system ones.

Since Cheyenne uses the PBS queuing system (typically documented in the doc section on how to submit
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs) jobs, I want
to use similar system. How to find this template system is not straightforward. Ideally you are familiar with the
one to copy from already. If you know (e.g. from inspecting the sample batch job scripts

https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs
https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs

(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs) provided in
the documentation) what the comment leader (SBATCH , PBS , etc.) is then you can use that to find
candidates in the submitscripts.

In my case, PBS is the comment leader and using

> grep -l PBS simfactory/mdb/submitscripts/*.sub

which returns all run scripts containing PBS :

simfactory/mdb/submitscripts/bluewaters.sub
simfactory/mdb/submitscripts/golub.sub
simfactory/mdb/submitscripts/pbs-normal.sub
simfactory/mdb/submitscripts/philip-mpich.sub
simfactory/mdb/submitscripts/qb.sub
simfactory/mdb/submitscripts/shelob.sub
simfactory/mdb/submitscripts/smic.sub
simfactory/mdb/submitscripts/sunnyvale.sub

and I picked the bluewaters one as the one I am most familiar with. Make a copy:

> cp simfactory/mdb/submitscripts/bluewaters.sub simfactory/mdb/submitscrip
ts/cheyenne.sub

where the target file name cheyenne.sub is arbitrary but naming it after the "short name" of the machine is
useful to identify files.

Simfactory uses placeholders of the from @FOO@ in runscript and submitscripts to inject information about the
run. These are (mostly) described in the Simulation Factory User Guide
(https://simfactory.bitbucket.io/simfactory2/userguide/), or in the Simulation Factory Advanced Tutorial
(https://docs.einsteintoolkit.org/et-docs/Simulation_Factory_Advanced_Tutorial), or in the Configuring a new
machine (https://docs.einsteintoolkit.org/et-docs/Configuring_a_new_machine) Einstein Toolkit wiki page.

Submitscript
Next edit the new using the sample batch job scripts to fill in all information required. In Cheyenne's case, and
most likely for other clusters, I needed to ajust the lines dealing with node allocations: -l nodes=... in
BlueWaters and -l select for Cheyenne. In the end I made some minor changes only:

https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs
https://simfactory.bitbucket.io/simfactory2/userguide/
https://docs.einsteintoolkit.org/et-docs/Simulation_Factory_Advanced_Tutorial
https://docs.einsteintoolkit.org/et-docs/Configuring_a_new_machine

> diff -u simfactory/mdb/submitscripts/bluewaters.sub simfactory/mdb/submit
scripts/cheyenne.sub
--- simfactory/mdb/submitscripts/bluewaters.sub 2021-08-31 09:57:09.5529590
00 -0600
+++ simfactory/mdb/submitscripts/cheyenne.sub 2021-09-16 13:04:11.9503380
00 -0600
@@ -1,12 +1,13 @@
#! /bin/bash
#PBS -A @ALLOCATION@
-#PBS -q @(ifthen("@QUEUE@"[-3:-1]==":x", "@QUEUE@"[:-3], "@QUEUE@"))@
-#PBS -r n
+#PBS -q @QUEUE@
#PBS -l walltime=@WALLTIME@
-#PBS -l nodes=@NODES@:ppn=@PPN@:@("@QUEUE@"[-3:]==":xk" ? "xk" : "xe")@
+#PBS -l select=@NODES@:ncpus=@PPN@:mpiprocs=@NODE_PROCS@:ompthreads=@NUM_T
HREADS@
#PBS @("@CHAINED_JOB_ID@" != "" ? "-W depend=afterany:@CHAINED_JOB_ID@" :
"")@
#PBS -N @SIMULATION_NAME@
#PBS -m abe
+#PBS -M @EMAIL@
+#PBS -k eod
#PBS -o @RUNDIR@/@SIMULATION_NAME@.out
#PBS -e @RUNDIR@/@SIMULATION_NAME@.err
cd @SOURCEDIR@

Ian Hinder's simfactory users guide
(https://simfactory.bitbucket.io/simfactory2/userguide/processterminology.html) lists the conventions used for
nodes, MPI ranks, threads, etc. in simfactory and is very handy for this.

Variable Option Definition

NODES nodes

PROCS_REQUESTED cores

PPN –ppn cores per node

NUM_PROCS processes

NODE_PROCS processes per node

PROCS –procs threads

NUM_THREADS –num-threads threads per process

PPN_USED –ppn-used threads per node

NUM_SMT –num-smt threads per core

I strongly advise to ignore any hyperthreading settings for now since these are usually cluster specific and not
very useful for Cactus.

Runscript
Runscript and submit script form a pair so typically one needs starts from the same cluster as a template. In my
case BlueWaters.

https://simfactory.bitbucket.io/simfactory2/userguide/processterminology.html

> cp simfactory/mdb/runscripts/bluewaters.run simfactory/mdb/runscripts/che
yenne.run

the edit it in an editor. Since BlueWaters, being a Cray uses aprun but Cheynne uses (in my case) OpenMPI
some changes are required to the actual Cactus command line.

Here consulting the cluster provided sample job scripts for a hybrid MPI+OpenMP job using the selected MPI
stack are useful: https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-
submittingSubmittingjobs (https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-
submittingSubmittingjobs)

You may want to test out e.g. mpirun for the MPI stack to use:

> bash -i
> module load openmpi/4.0.5
> which mpirun
> mpirun --version
> exit

which uses a trick of starting a new shell, then loading the module in there. This ensures that once one runs
exit the sub-shell quits and I do not change my actual module environment.

I picked some information out of other runscripts using OpenMPI (golub) to set all OpenMPI options and
create a uniform job script.

Run script diff

In end end I based my runscript on Golub's script since it also uses PBS and OpenMPI:

https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-submittingSubmittingjobs

> diff -uw simfactory/mdb/runscripts/golub.run simfactory/mdb/runscripts/ch
eyenne.run
--- simfactory/mdb/runscripts/golub.run 2021-08-31 09:57:09.545304000 -0600
+++ simfactory/mdb/runscripts/cheyenne.run 2021-09-16 12:41:56.0430780
00 -0600
@@ -1,19 +1,22 @@
-#!/bin/sh
+#! /bin/bash

echo "Preparing:"
set -x # Output commands
set -e # Abort on errors

+cd @RUNDIR@-active
+
echo "Checking:"
pwd
hostname
date
+cat ${PBS_NODEFILE} > SIMFACTORY/NODES

echo "Environment:"
export CACTUS_NUM_PROCS=@NUM_PROCS@
export CACTUS_NUM_THREADS=@NUM_THREADS@
export OMP_NUM_THREADS=@NUM_THREADS@
-#env | sort > SIMFACTORY/ENVIRONMENT
+env | sort > SIMFACTORY/ENVIRONMENT

echo "Job setup:"
echo " Allocated:"

Option list
Next I take a look at the option list, which is used to compile Cactus. This would have been easisest to do first
actually since it does not require submit or run information.

Again, start from a working option list for a similar system. Here though the determining factor is what compiler
and MPI stack to use. Sticking with the default compiler for now, one can check which modules are currently
loaded:

> module list

Currently Loaded Modules:
 1) ncarenv/1.3 2) intel/19.1.1 3) ncarcompilers/0.5.0 4) mpt/2.22
5) netcdf/4.8.1

which shows the Intel compiler and HPE MPI stack mpt (the latter I did not know about and swapped for
OpenMPI).

If you are unclear what a module does, then the module show command is useful. For example for mpt :

> module show mpt

 /glade/u/apps/ch/modulefiles/default/intel/19.1.1/mpt/2.22.lua:

family("mpi")
whatis("MPT MPI v2.22")
help([[The HPE Message Passing Interface (MPI) is an MPI development enviro
nment
designed to enable the development and optimization of high performance
computing (HPC) Linux® applications.

Software website - https://www.hpe.com/us/en/product-catalog/detail/pip.hpe
-performance-software-message-passing-interface.1010144155.html

Built on Wed May 27 16:02:29 MDT 2020
Modules used:
 intel/19.1.1
]])
prepend_path("PATH","/glade/u/apps/ch/opt/mpt/2.22/bin")
prepend_path("MANPATH","/glade/u/apps/ch/opt/mpt/2.22/man")
prepend_path("CPATH","/glade/u/apps/ch/opt/mpt/2.22/include")
prepend_path("FPATH","/glade/u/apps/ch/opt/mpt/2.22/include")
prepend_path("LD_LIBRARY_PATH","/glade/u/apps/ch/opt/mpt/2.22/lib")
prepend_path("LIBRARY_PATH","/glade/u/apps/ch/opt/mpt/2.22/lib")
setenv("MPI_ROOT","/glade/u/apps/ch/opt/mpt/2.22")
setenv("MPT_VERSION","2.22")
setenv("LMOD_MPI","mpt_fmods")
setenv("LMOD_MPI_VERSION","2.22")
setenv("MPICC_CC","icc")
setenv("MPICXX_CXX","icpc")
setenv("MPIF90_F90","ifort")
setenv("MPIF08_F08","ifort")
setenv("OSHCC_CC","icc")
setenv("OSHCXX_CXX","icpc")
setenv("OSHF90_F90","ifort")
prepend_path("CPATH","/glade/u/apps/ch/opt/mpt_fmods/2.22/intel/19.1.1/")
prepend_path("LD_LIBRARY_PATH","/glade/u/apps/ch/opt/mpt_fmods/2.22/intel/1
9.1.1/")
append_path("MODULEPATH","/glade/u/apps/ch/modulefiles/default/mpt/2.22/int
el/19.1.1")
prepend_path("PATH","/glade/u/apps/ch/opt/ncarcompilers/0.5.0/intel/19.1.1/
mpi")
setenv("NCAR_LIBS_MPT","-lrt -ldl")
setenv("NCAR_ROOT_MPT","/glade/u/apps/ch/opt/mpt/2.22")
setenv("NCAR_RANK_MPT","1000")

which will come in useful afterwards. The Intel compiler's executable name is icpc which is something to look
for in existing option lists. Since I picked the OpenMPI stack out of the one module avail output I picked
shelob-openmpi.cfg as the starting point, which I know uses the Intel compiler and OpenMPI . Otherwise
grep -l icpc can be used similar to the submit script.

> cp shelob-openmpi.cfg cheyenne.cfg

Setting CPP , FPP , CC , CXX , F90 is fairly straightforward when using the module system. A tricky one is
that FPPFLAGS must be set (if FPP is set) to --traditional to avoid strange parsing errors in Fortran
files that are being passed through FPP to expand C preprocessor macros.

Most other <FOO>FLAGS can be left alone usually or upated based on documentation on how to compile
(https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-compilingCompiling). Required
settings are -std=gnu99 and -std=gnu++11 for language support required by Cactus and -
safe_cray_ptr to allow use of "Cray" pointers in Fortran code which is required by the ET (GRHydro in
particular).

The Intel compiler (all versions) rely on the C++ STL library shipped with the GNU compiler and need to be told
which one to use if the admins did not already set things up correctly. Usually it is easiest to add a -gxxname
<FULL-PATH-TO-G++> to CXXFLAGS to force this. gcc >= 6 should be sufficient for all needs of the ET. Note
that not all version are supported, in particular too new versions can cause problems as well as too old ones.

LIBS also is tricky and often (has to) lists the Fortran runtime library (ifcore for Intel, gfortran for
GNU) so that the C++ linker includes it in our mixed language code.

When using the Intel compiler, make sure to include <FOO>_NO_OPTIMISE = -O0 flags so that Cactus can
explicitly disable optimization as needed for compilers that optimize by default (Intel and Cray).

This finishes compiler options and options for ExtenalLibraries are next.

For BLAS / LAPACK and the Intel compiler, I want to use Intel's MKL library which is included with the
compiler. As such there is a shorcut use it by specifying -mkl to the compiler. Usually in the simfactory option
lists I do this by (ab-)using BLAS_LIBS and LAPACK_LIBS :

BLAS_DIR = NO_BUILD
BLAS_LIBS = -mkl

LAPACK_DIR = NO_BUILD
LAPACK_LIBS = -mkl

which occasionally requires that one adds the path to the directory containing MKL libraries to the --rpath
option of the linker so that the library files are found at runtime. This is done by setting LDFLAGS = -W,--
rpath,<PATH-TO-MKL> where the correct path is a bit of guesswork. The output of module show
intel/19.1.1 is very useful for this sine it list the compiler installation directory:

https://arc.ucar.edu/knowledge_base/72581213#QuickstartonCheyenne-compilingCompiling

> module show intel/19.1.1

 /glade/u/apps/ch/modulefiles/default/compilers/intel/19.1.1.lua:

family("compiler")
whatis("intel v19.1.1")
help([[This module loads the Intel Compilers:
 C: icc
 C++: icpc
 Fortran: ifort
For more information on the individual compilers and their suboptions
refer to the man page for the individual compilers.

Note that compiler version 19.1.1 is part of version 2020u1
of the Intel Parallel Studio.

Website: https://software.intel.com/en-us/parallel-studio-xe
]])
prepend_path("PATH","/glade/u/apps/opt/intel/2020u1/compilers_and_librarie
s/linux/bin/intel64")
prepend_path("LD_LIBRARY_PATH","/glade/u/apps/opt/intel/2020u1/compilers_an
d_libraries/linux/lib/intel64")

where PATH and LD_LIBRARY_PATH are of interest. Sometimes MLROOT or MKLHOME may also be set
which are best. In any case we are looking for paths that end in mkl/lib/intel64 (for MKL) and
linux/lib/intel64 (for generic runtime libs).

At this point I also look for other modules that I can use to satisfy ExternalLibraries. For example
fftw/3.3.8 for FFTW3 . Similar to the MKL example module show fftw/3.3.8 provides clues for

what paths to use and libraries to link against. While this is not guaranteed it works quite often.

Each module used this way should be added to the envsetup option of the machine ini file (with full path) like
so:

module load fftw/3.3.8 &&

where the && at the end serves to propagate module load errors to simfactory so that it aborts a build if a
module fails to load (more on this when setting up the ini file).

Some ExternalLibraries offer a <FOO>_EXTRA_LIBS variable to specify extra depenencies to link against.
This is often required for HWLOC which can detect and use libnuma for non-uniform memory layouts but
detects it in such a manner that Cactus cannot automatically handle it. Thus often

HWLOC_EXTRA_LIBS = numa

is required to avoid strange link time errors about missing symbols (mostly for static lining).

Another often useful trick is to set <FOO>_DIR = BUILD which forces the ExternalLibrary to be built by
Cactus using the included tarball.

Option list changes

This time the changes are quite extensive:

--- simfactory/mdb/optionlists/shelob-openmpi.cfg 2021-08-31 09:57:0
9.537577000 -0600
+++ simfactory/mdb/optionlists/cheyenne.cfg 2021-09-16 12:51:19.1806930
00 -0600
@@ -1,24 +1,22 @@
Whenever this version string changes, the application is configured
and rebuilt from scratch
-VERSION = shelob-openmpi-2014-10-21
+VERSION = cheyenne-2021-09-01

CPP = cpp
FPP = cpp
-CC = /usr/local/compilers/Intel/composer_xe_2013.5.192/bin/intel64/icc
-CXX = /usr/local/compilers/Intel/composer_xe_2013.5.192/bin/intel64/icpc
-F77 = /usr/local/compilers/Intel/composer_xe_2013.5.192/bin/intel64/ifort
-F90 = /usr/local/compilers/Intel/composer_xe_2013.5.192/bin/intel64/ifort
-
-CPPFLAGS = -DMPICH_IGNORE_CXX_SEEK
-FPPFLAGS = -traditional
-CFLAGS = -g -xHOST -align -std=gnu99 -U__STRICT_ANSI__ -ansi_alias
-CXXFLAGS = -g -xHOST -align -std=gnu++11 -U__STRICT_ANSI__ -ansi_alias
+CC = icc
+CXX = icpc
+F90 = ifort
+
+FPPFLAGS = --traditional
+CFLAGS = -g -xHOST -align -std=gnu99
+CXXFLAGS = -g -xHOST -align -std=gnu++11
F77FLAGS = -g -xHOST -align -pad -safe_cray_ptr
F90FLAGS = -g -xHOST -align -pad -safe_cray_ptr

-LDFLAGS = -Wl,-rpath,/usr/local/compilers/Intel/composer_xe_2013.5.192/com
piler/lib/intel64 -Wl,-rpath,/usr/local/compilers/Intel/composer_xe_2013.5.
192/mkl/lib/intel64
-LIBDIRS = /usr/local/packages/cuda/7.5/lib64 /usr/local/compilers/Intel/
composer_xe_2013.5.192/compiler/lib/intel64 /usr/local/compilers/Intel/comp
oser_xe_2013.5.192/mkl/lib/intel64
-LIBS = cudart ifcore imf svml numa
+LDFLAGS = -Wl,-rpath,/glade/u/apps/opt/intel/2019u5/compilers_and_librarie
s/linux/lib/intel64 -Wl,-rpath,/glade/u/apps/opt/intel/2019u5/compilers_and
_libraries/linux/mkl/lib/intel64
+#LIBDIRS = /usr/local/packages/cuda/7.5/lib64 /usr/local/compilers/Inte
l/composer_xe_2013.5.192/compiler/lib/intel64 /usr/local/compilers/Intel/co
mposer_xe_2013.5.192/mkl/lib/intel64
+LIBS = ifcore

C_LINE_DIRECTIVES = yes
F_LINE_DIRECTIVES = yes
@@ -27,7 +25,6 @@
VECTORISE_ALIGNED_ARRAYS = no
VECTORISE_INLINE = no

-# -check-uninit fails for asm output operands
DEBUG = no
CPP_DEBUG_FLAGS = -DCARPET_DEBUG
FPP_DEBUG_FLAGS = -DCARPET_DEBUG
@@ -75,58 +72,33 @@
F77_WARN_FLAGS =
F90_WARN_FLAGS =

-CUDA_DIR = /usr/local/packages/cuda/7.5
-CUCC = /usr/local/packages/cuda/7.5/bin/nvcc
-CUCC_EXTRA_FLAGS = --maxrregcount 60 -Drestrict=__restrict__
-
-

BLAS_DIR = NO_BUILD
BLAS_LIBS = -mkl

-# CUDA, configured with the flesh
-CUCC = /usr/local/packages/cuda/7.5/bin/nvcc
-CUCCFLAGS = -m 64 -arch sm_35 -g -maxrregcount 60 -Drestrict=__r
estrict__
-CUCC_OPTIMISE_FLAGS = -O3 -use_fast_math
-CUCC_WARN_FLAGS =
+FFTW3_DIR = /glade/u/apps/ch/opt/fftw/3.3.8/intel/19.0.5

-# CUDA, configured via thorn CUDA
-CUDA_DIR = /usr/local/packages/cuda/7.5
-CUCC_ARCH = sm_35
-CUCC_EXTRA_FLAGS = -maxrregcount 63 -Drestrict=__restrict__
-CUCC_EXTRA_OPTIMISE_FLAGS = -use_fast_math
-CUCC_EXTRA_WARN_FLAGS = -use_fast_math
-
-# FFTW3_DIR = /usr/local/packages/fftw/3.3.3/Intel-13.0.0
-FFTW3_DIR = BUILD
+GSL_DIR = /glade/u/apps/ch/opt/gsl/2.6/intel/19.0.5

-GSL_DIR = /usr/local/packages/gsl/1.15/Intel-13.0.0
+HDF5_DIR = /glade/u/apps/ch/opt/netcdf/4.8.0/intel/19.0.5

-HDF5_DIR = /usr/local/packages/hdf5/1.8.10/Intel-13.0.0-openmpi-1.6.2
-# HDF5_DIR = BUILD
-
-HWLOC_EXTRA_LIBS = numa
+#HWLOC_EXTRA_LIBS = numa

LAPACK_DIR = NO_BUILD
LAPACK_LIBS = -mkl

-MPI_DIR = /usr/local/packages/openmpi/1.6.5/Intel-13.0.0
-MPI_INC_DIRS = /usr/local/packages/openmpi/1.6.5/Intel-13.0.0/include
-MPI_LIB_DIRS = /usr/local/packages/openmpi/1.6.5/Intel-13.0.0/lib /usr/lib
64

-MPI_LIBS = mpi open-rte open-pal rdmacm ibverbs ibumad util
+MPI_DIR = /glade/u/apps/ch/opt/openmpi/4.0.5/intel/19.0.5
+MPI_LIBS = mpi mpi_usempif08

OPENBLAS_DIR = NO_BUILD
OPENBLAS_LIBS = -mkl

-OPENCL_DIR = /usr/local/packages/cuda/7.5
-
-PAPI_DIR = /home/diener/papi-5.1.0.2-intel
-PAPI_LIBS = papi
+PAPI_DIR = BUILD

PETSC_DIR = BUILD
-PETSC_BLAS_EXTRA_LIB_DIRS = /usr/local/compilers/Intel/composer_xe_2013.
5.192/mkl/lib/intel64
+PETSC_BLAS_EXTRA_LIB_DIRS = /glade/u/apps/opt/intel/2019u5/compilers_and
_libraries/linux/mkl/lib/intel64
PETSC_BLAS_EXTRA_LIBS = mkl_intel_lp64 mkl_intel_thread mkl_core iom
p5
-PETSC_LAPACK_EXTRA_LIB_DIRS = /usr/local/compilers/Intel/composer_xe_2013.
5.192/mkl/lib/intel64
+PETSC_LAPACK_EXTRA_LIB_DIRS = /glade/u/apps/opt/intel/2019u5/compilers_and
_libraries/linux/mkl/lib/intel64
PETSC_LAPACK_EXTRA_LIBS = mkl_intel_lp64 mkl_intel_thread mkl_core iom
p5

PTHREADS_DIR = NO_BUILD

Machine ini file
The ini file ties al information together by providing information direclty to simfactory. It has sufficient information
for simfactory to identify the machine and indicates which option list, submit script and run script to use.

Since it interacts with the resource manager, it usually best to use the same machine as "donor" for both the
submitscript and machine ini templates. In my case, this is BlueWaters:

> cp simfactory/mdb/machines/bluewaters.ini simfactory/mdb/machines/cheyenn
e.ini

Editing the file it is important to adjust the section name since this is the name that simfactory will use for the
machine. So I change [bluewaters] to [cheyenne] .

Using the correct template means that many tricky fields, like submitpattern are already corect or at least
filled with easily fixable guesses.

Similarly you should update the envsetup setting to load all modules that were used to provide
ExternalLibraries in the option list cheyenne.cfg (thus you may want to have both files open and edit them
incrementally). The shell command in envsetup is execute before simfactory builds, submits or otherwise
runs shell commands and loads required modules. Simfactory aborts if this command fails.

It is usually best to link all lines with && to propagate module load error to simfactory so that it can abort the
build process. Personally I always list the exact versions required and also add module unload <foo>
lines at the beginning for all modules I will later load to avoid module load conflicts. You may also have to add a
line like source /etc/profile at the very start to ensure that the module command itself is available by
(re)executing the shell's start files (profile) in the shell that simfactory starts.

Most option are fairly straightforward to set by consulting the machine documentation pages, e.g.
https://arc.ucar.edu/knowledge_base/70549542 (https://arc.ucar.edu/knowledge_base/70549542) for
homepage, machine name, login hostname to use, flop counts etc. (though WikiPedia can also be a good
source for this "information only" fields).

They are all extensively documented in the ET wiki's (https://docs.einsteintoolkit.org/et-
docs/Configuring_a_new_machine) "Configuring a new machine" page.

aliaspattern should be set to a regular expression that matches the login node hostnames for this
machine (and only this machine). If you did not note it down, ./simfactory/bin/sim whoami will show it
again (until you have created the ini file). For CHeyenne a good guess is:

aliaspattern = ^cheyenne[1-9]\.cheyenne\.ucar\.edu$

where the anchors ^ and $ ensure that the full hostname is considered.

Once you are happy the ini file you can test envsetup and the aliaspattern using:

> ./simfactory/bin/sim whoami
> ./simfactory/bin/sim execute 'echo "Hello, world!"'

which should output the detected machine name (cheyenne) in the first line. The second line instructs
simfactory to run the systems echo command to print "Hello, world!" using the envsetup command.

On Cheyenne I used this to fix module conflicts between HDF5 (which I want) and netcdf (loaded by
default but I don't care).

Machine ini diff

https://arc.ucar.edu/knowledge_base/70549542
https://docs.einsteintoolkit.org/et-docs/Configuring_a_new_machine

> diff -uw simfactory/mdb/machines/bluewaters.ini simfactory/mdb/machines/c
heyenne.ini
--- simfactory/mdb/machines/bluewaters.ini 2021-08-31 09:57:09.4562620
00 -0600
+++ simfactory/mdb/machines/cheyenne.ini 2021-09-16 13:10:28.2465750
00 -0600
@@ -1,91 +1,74 @@
-[bluewaters]
+[cheyenne]

-# last-tested-on: 2016-06-04
-# last-tested-by: Erik Schnetter <schnetter@gmail.com>
+# last-tested-on:
+# last-tested-by: Roland Haas <rhaas@illinois.edu>

Machine description
-nickname = bluewaters
-name = Blue Waters
-location = NCSA
-description = A Cray XE6/XK7 at the NCSA
-webpage = https://bluewaters.ncsa.illinois.edu/user-guide
+nickname = cheyenne
+name = Cheynne
+location = NCAR / UCAR
+description = An SGI ICE XA Cluster
+webpage = https://www2.cisl.ucar.edu/resources/computational-syste
ms/cheyenne
status = production

Access to this machine
-hostname = h2ologin-duo.ncsa.illinois.edu
+hostname = cheyenne.ucar.edu
sshcmd = ssh
sshopts =

-# CUDA disabled b/c CUDA requires gcc 4.9 instead of 6.3
envsetup = <<EOT
 source /etc/profile
- module unload PrgEnv-cray PrgEnv-gnu PrgEnv-intel PrgEnv-pathscale Prg
Env-pgi
- module load PrgEnv-gnu/5.2.82
- module unload gcc
- module unload OpenSSL
- module load gcc/6.3.0
- module load atp
- module load boost/1.63.0
- module load cray-hdf5-parallel/1.10.2.0
- module load cray-petsc/3.9.3.0
- module load cray-fftw/3.3.6.5
- module load gsl/1.16
- module load make/3.82
- module load papi/5.5.0.1

- module load OpenSSL/1.0.2m
- module load pmi
+ module unload intel openmpi netcdf mpt ncarcompilers &&
+ module load intel/19.0.5 &&
+ module load ncarcompilers/0.5.0 &&
+ module load openmpi/4.0.5 &&
+ module load gsl/2.6 &&
+ module load fftw/3.3.8 &&
+ module load hdf5/1.10.7 &&
+ unset HDF5
EOT
-aliaspattern = ^h2ologin[1-4](\.ncsa\.illinois\.edu)?$
+aliaspattern = ^cheyenne[1-9].cheyenne\.ucar\.edu$

Source tree management
-sourcebasedir = /u/sciteam/@USER@
+sourcebasedir = /glade/u/home/@USER@
disabled-thorns = <<EOT
EOT
enabled-thorns = <<EOT
 ExternalLibraries/pciutils
EOT
-# GPU using thorns
-# CactusExamples/HelloWorldCUDA
-# ExternalLibraries/OpenCL
-# CactusExamples/HelloWorldOpenCL
-# CactusExamples/WaveToyOpenCL
-# CactusUtils/OpenCLRunTime
-# CactusUtils/Accelerator
-# McLachlan/ML_BSSN_CL
-# McLachlan/ML_BSSN_CL_Helper
-# McLachlan/ML_WaveToy_CL
-optionlist = bluewaters-gnu.cfg
-submitscript = bluewaters.sub
-runscript = bluewaters.run
-makejobs = 16
+optionlist = cheyenne.cfg
+submitscript = cheyenne.sub
+runscript = cheyenne.run
+makejobs = 4
make = make -j@MAKEJOBS@

Simulation management
-basedir = /scratch/sciteam/@USER@/simulations
-cpu = AMD Opteron(TM) Processor 6276
-cpufreq = 2.45 # 2.3 is guaranteed, 2.45 is average
-flop/cycle = 4
+basedir = /glade/scratch/@USER@/simulations
+cpu = 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors 16 f
lops per clock
+cpufreq = 2.3
+flop/cycle = 16

max-num-smt = 1
num-smt = 1
-ppn = 32
-mpn = 4
-max-num-threads = 32
-num-threads = 8
+ppn = 36
+#mpn = 4
+max-num-threads = 36
+num-threads = 6
memory = 65536
-nodes = 25712
+nodes = 4032
min-ppn = 1
allocation = NO_ALLOCATION
-queue = normal:xe # or normal:xk
-maxwalltime = 48:00:00
+# see https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne/
running-jobs/job-submission-queues
+# for available queue: premium, regular, economy, share
+queue = regular
+maxwalltime = 12:00:00
submit = cd @RUNDIR@ && qsub @SCRIPTFILE@
getstatus = qstat @JOB_ID@
stop = qdel @JOB_ID@
-submitpattern = (\d+[.]bw)
+submitpattern = (\d+)\.chadmin1
statuspattern = "^@JOB_ID@[.].* [QRH] "
queuedpattern = "^@JOB_ID@[.].* Q "
runningpattern = "^@JOB_ID@[.].* R "
holdingpattern = "^@JOB_ID@[.].* H "
-#scratchbasedir = /lustre/scratch/@USER@
exechost = hostname
exechostpattern = (.*)
stdout = cat @SIMULATION_NAME@.out

Compiling for the first ime
With this in place you can now try to compile using:

> ./simfactory/bin/sim build --thornlist manifest/einsteintoolkit.th etk

In may case this resulted in a CST time failure:

Don't understand the setting "HDF/glade/u/apps/ch/opt/netcdf/4.8.0/intel/1
9.0.5/" !

which due to some of the NCAR modules setting an environment variable HDF5 which conflicts (and
overrides) any option list variable HDF5 .

In my case the solution is to add undef HDF5 ot envsetup .

Updating option lists and recompiling
You must use the --reconfig option of simfactory and explicitly give the new (even if same file name)
option list as an --optionlist simfactory/mdb/optionlists/cheyenne.cfg to force an update.
Using make etk-cleandeps may also be useful.

Similarly for --runscript and --submitscript , but not for the ini file.

In []:

1

