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Crust structure

Chamel & Haensel, Liv. Rev. Relativity

For a cold NS the crust may extend from ρ ∼ 104–1014g cm−3.
Impurities irrelevant; breaking strain large (Horowitz et al.).
A crystalline QCD core is an exotic possibility.
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Crustal evolution
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In binary inspiral, tidal effects will partially crack the crust only late on
(Penner et al.).
However, resonant interface modes may shatter the whole crust
(Tsang et al.).
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Matter space
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A body is given by a reference configuration X , and its deformation
computed from the map ψ.
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Shocks and the fluid limit

Standard fluid shocks are possible. Jump conditions [ψY ,X
y ] = 0 forbid

other discontinuities.
The fluid limit is singular. Integrability conditions ψA

[i,j] connected to
hyperbolicity questions.
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Dynamics

The stress-energy tensor is that of hydro, plus anisotropic terms πab:

T ab = (e + p)uaub + p gab+πab.

This gives the balance laws

(
√
γxU),t +

(
α
√
γxF i

)
,i

= source terms,

with (introducing π = v iv jπij = γ ijπij , and ignoring gauge terms)

U =

D
Sj
τ

 =

 nW
nhW 2vj+πijv i

nhW 2 − p − D−π

 , F i ∼

 Dv̂ i

nhW 2vj v̂ i + pδi
j+π

i
j

(nhW 2 − D)v̂ i+π0i

 .

Strictly the D equation is redundant. Source terms standard.
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Equations

For completeness we note the full system:

kAB,t + v̂ jkAB,j = 0,

ψA
i,t +

(
v̂ jψA

j

)
,i

= 2v̂ jψA
[i,j],

and, as given earlier

(
√
γxU),t +

(
α
√
γxF i

)
,i

= source terms.

We also have constraints
ψA
[i,j] = 0,

and an EOS ε ≡ ε(n, I1, I2, s) where n, I1,2 are scalar invariants of kA
B.
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Con2Prim

Converting (kAB, ψ
A

i ,Sj , τ)→ (v i ,p) is the only remaining task.

Standard iterative approach:
1 Guess four quantities: p − π and πijv j ;
2 Compute all terms consistent with the guess; in particular, n, I1,2, s

can be found;
3 Use the EOS to compute p and πab from the above;
4 Compute the residuals for the guesses.

Reduces to standard approach for hydro; very expensive (50% of
computational time).
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Newtonian shock tube

A Newtonian shock tube with all
waves.

Only the right wave is a shock.
Some rarefactions are very
steep.

Results using 1000 points (100
shown).

All features well captured. No
oscillations. Minor under/over
shoots.

2- and 6-waves only clear in
deformation components.
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SR shock tube
A relativistic shock tube with 4
waves - no contact, 3- or
5-wave.

Only the right wave is a shock.
Most rarefactions are very
steep.

Results using 1000 points (100
shown).

All features well captured.
Minor oscillations. Minor
under/over shoots.

Noticeable glitch near trivial
contact - converges away.

Strong deformation best seen
in ψY
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Complex shock tubes

Use cylindrical coordinates with
the Newtonian shock.

Tests sources, non-trivial
metric.

No problems. Expected secular
drift from boundary conditions.
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Rotor tests

Newtonian literature suggests
problems with naive evolution
of ψ:

1 hyperbolicity issues explain
this;

2 fixes can be implemented
1 constraint addition in

sources stabilizes it
2 constraint damping used

by some groups.

However, no problem with rotor
tests in Newtonian or SR!
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Coupling

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

x

Density

200 points
400 points

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0  0.2  0.4  0.6  0.8  1

x

Velocity

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0  0.2  0.4  0.6  0.8  1

x

Pressure

Attempts to model
crust-core transition by
“smearing” µ̌ fail. Need level
sets (e.g. Millmore &
Hawke) or similar.
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Conclusions

Elasticity alone a “straightforward” extension.
ET implementation underway:

I Basic shock tests work;
I Use to test multi-D constraint issues with mesh refinement –

already suggesting issues with hyperbolicity?
Outstanding questions include

1 Accurate numerics – characteristic structure really complex
2 Multi-D issues – especially constraints
3 Weak solution existence/uniqueness implies EOS constraints?
4 Multi-material coupling, and melting/freezing.
5 Shattering – fracture mechanics, wave propagation.
6 Coupling to magnetic fields.

I. Hawke (University of Southampton) Numrelasticity January 2012 19 / 19



Implementation details

We note that by assumption kAB is differentiable. We can thus evolve
kAB using naive central differencing.

We then choose primitive variables (ψA
i , v i ,p) and evolve the

remaining equations using standard HRSC methods:
MoL – typically RK3;
Slope limiting RSA – typically van Leer MC;
HLL flux – typically with excessive dissipation.

Fix flat space and ignore hyperbolicity fix for now: the source terms are
all trivial.
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EOS

The EOS depends on the strain gAB compared to the reference kAB
and e.g. the entropy, in addition to any polarizing effects.

Simplify in two ways:
1 Homogeneous: ε ≡ ε(gAB, kAB, s)

2 Isotropic: ε ≡ ε(ρ, I1,2, s) – the strain dependence is encoded in
the invariants of kA

B.

Simple tests here use toy EOS using gamma-law fluid plus term
proportional to a shear scalar.

Existence and uniqueness of weak solutions requires EOS restrictions
(as yet unclear).
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